D	• • • • •	A		4. 4	Watan	A	Control	DIA	Log		Decier
Pro	nosea	a ment	Imeni	io ine	water	ОЛІЯНІУ	CONTROL	Plan -	· I /OS /	a ngeles -	Keylon
110	posca .		Inche		·· utti	Zuunty	Control	1 10011	1001	Ingeles	Iteston.

to Incorporate the

Total Maximum Daily Load for Metals and Selenium in the Calleguas Creek, its Tributaries and Mugu Lagoon

Т

E

Т

T

E

Proposed for adoption by the California Regional Water Quality Control Board, Los Angeles Region on June 8, 2006

Amendments

Table of ContentsAdd:

Chapter 7. Total Maximum Daily Loads (TMDLs)

7-19 Calleguas Creek Watershed Metals and Selenium TMDL

List of Figures, Tables, and Inserts

Add:

Chapter 7. Total Maximum Daily Loads (TMDLs)
Tables
7-19 Calleguas Creek Watershed Metals and Selenium TMDL
7-19.1. Calleguas Creek Watershed Metals and Selenium TMDL: Elements
7-19.2. Calleguas Creek Watershed Metals and Selenium TMDL: Implementation Schedule

Chapter 7. Total Maximum Daily Loads (TMDLs)

Chapter 7. Total Maximum Daily Loads (TMDLs) Calleguas Creek Watershed Metals and Selenium TMDL

This TMDL was adopted by:

The Regional Water Quality Control Board on [Insert date].

This TMDL was approved by:

The State Water Resources Control Board on [Insert date]. The Office of Administrative Law on [Insert date]. The U.S. Environmental Protection Agency on [Insert date].

The elements of the TMDL are presented in Table 7-19.1 and the Implementation Plan in Table 7-19.2

TMDL Element	Calleguas Creek	Watershed I	Metals and S	elenium TMDL					
Problem	Three of fourteen reac	thes in the Cal	leguas Creek	Watershed (CCW)					
Statement			-						
Statement	including Revolon Slough, Lower Calleguas Creek – Reach 2, and Mugu Lagoon are identified on the 2002 Clean Water Act Section								
	303(d) list of water-quality limited segments as impaired due to								
	elevated levels of metals and selenium in water. The 303(d) listings,								
	-								
	which were approved by the State Water Resources Control Board in February 2003, require the development of TMDLs to establish the								
	February 2003, require the development of TMDLs to establish the								
	maximum amount of pollutants a water body can receive without								
	exceeding water quality standards. TMDLs for listed metals and								
	selenium are presented herein in one document because, as a class of								
	compounds, they possess similar physical and chemical properties that								
	influence their persistence, fate, and transport in the environment.								
Numeric Targets	This TMDL establishes four types of numeric targets: (1) CTR criteria								
8	in dissolved fraction f								
	recoverable form for s	. . ·	•						
					•				
	selenium; (3) Bird egg targets for mercury and selenium ; and (4)								
	Sediment quality guidelines for copper, nickel, and zinc for 303(d)								
	listed reaches. Attainment of sediment quality targets will be evaluated in combination with sediment toxicity data, if available.								
	1. Copper Targets	Water Qua	lity Target]					
		(ug dissolved		Sediment Target					
	Subwatershed	Dry Weather	Wet Weather	(ppb)					
		CCC	СМС						
	Mugu Lagoon	3.1*WER ¹	4.8*WER ¹	34000					
	Calleguas Creek 2	3.1*WER ¹	4.8*WER ¹	34000					
	Calleguas Creek 3	25.9	26.3	NA^2					
	Revolon/Beardsley	3.1*WER ¹	4.8*WER ¹	NA^2					
	Conejo	27.9	41.6	NA ²					
	Arroyo Simi/Las Posas	29.3	29.8	NA^2					
				on, lower Calleguas Creek and					
	Revolon Slough has been submitted to the Regional Board and is currently under review by Regional Board and USEPA staff. If a WER or SSO for copper is approved, the numeric target in this TMDL shall be set in accordance with the approved WER or SSO, or the Regional Board will reconsider revision to the numeric targets based on the approved WER or SSO.								
	² Sediment targets were not se	elected as alternative t	target for this reach	as it is not on the 303(d) list.					
	 ² Sediment targets were not selected as alternative target for this reach as it is not on the 303(d) list. 2. Mercury Targets a) Fish Tissue (Human Health): 0.3 mg/kg wet weight b) Fish Tissue (Wildlife): Trophic Level (TL) 3¹ < 50 mm: 0.03 mg/kg wet weight 								

Table 7-19.1. Calleguas Creek Watershed Metals and Selenium TMDL: Elements

T

E

Attachment A to Resolution No. R4-2006-XXX

 TL3 50-1: TL3 1503 C) Bird Egg (Wild) Water Column ¹ Tropic Level 3: Predawater fleas) Nickel 	850mm: Idlife): les n Target: 0.0 ators (e.g., minnows, sun	0.05 mg/kg v 0.1 mg/kg w ss than 0.5 mg/kg 051 ug total mercu ofish) on tropic level 2	et weight wet weight	
 d) Water Column ¹ Tropic Level 3: Preda water fleas) 3. Nickel 	n Target: 0.0	ss than 0.5 mg/kg 051 ug total mercu	wet weight	
¹ Tropic Level 3: Preda water fleas) 3. Nickel	ators (e.g., minnows, sun	-	ıry/L	
water fleas) 3. Nickel		fish) on tropic level 2		
Suhwatarchad	Water O		2 organism (e.g., copepoe	
Suhwatarshad		uality Target		
Suhwatarchad		ved Nickel/L)	Sediment Targe	
Subwatersileu	Dry Weather		-	
	CCC	СМС	(kho)	
Mugu Lagoon	8.2	74	20900	
Calleguas Creek 2	8.2	74	NA ¹	
Calleguas Creek 3	149	856	NA^1	
Revolon/Beardsley	8.2	74	NA^1	
Conejo	160	1292	NA ¹	
Arroyo Simi/Las Pos	as 168	958	NA^1	
A study to support a SS currently under reviewed nickel is approved, the for nickel based on the 4. Selenium	SO for nickel has be ed by the Regional Regional Board wi	Board and U.S. E	he Regional Board a PA staff. If a SSO	
currently under reviewe nickel is approved, the for nickel based on the	SO for nickel has be ed by the Regional Regional Board wi approved SSO. Water Qu	een submitted to the Board and U.S. E Il consider revision ality Target	he Regional Board a PA staff. If a SSO on to the numeric tar	
currently under reviewe nickel is approved, the for nickel based on the	SO for nickel has be ed by the Regional Regional Board wi approved SSO. Water Qu (ug Total	een submitted to the Board and U.S. E Il consider revision ality Target Selenium/L)	he Regional Board a PA staff. If a SSO on to the numeric tar Bird Egg	
currently under reviewe nickel is approved, the for nickel based on the 4. Selenium	SO for nickel has be ed by the Regional Regional Board wi approved SSO. Water Qu (ug Total Dry Weather	een submitted to ti Board and U.S. E Il consider revisio ality Target Selenium/L) Wet Weather	he Regional Board a PA staff. If a SSO on to the numeric tar	
currently under reviewe nickel is approved, the for nickel based on the 4. Selenium Subwatershed	SO for nickel has be ed by the Regional Regional Board wi approved SSO. Water Qu (ug Total Dry Weather CCC	een submitted to ti Board and U.S. E Il consider revisio aality Target Selenium/L) Wet Weather CMC	he Regional Board a PA staff. If a SSO : on to the numeric tar Bird Egg (ug/g)	
currently under reviewe nickel is approved, the for nickel based on the 4. Selenium Subwatershed Mugu Lagoon	SO for nickel has be ed by the Regional Regional Board wi approved SSO. Water Qu (ug Total Dry Weather CCC 71	een submitted to the Board and U.S. E Il consider revision ality Target Selenium/L) Wet Weather CMC 290	he Regional Board a PA staff. If a SSO on to the numeric tar Bird Egg (ug/g) 6	
currently under reviewe nickel is approved, the for nickel based on the 4. Selenium Subwatershed Mugu Lagoon Calleguas Creek 2	SO for nickel has be ed by the Regional Regional Board wi approved SSO. Water Qu (ug Total Dry Weather CCC 71 5	een submitted to ti Board and U.S. E Il consider revision ality Target Selenium/L) Wet Weather CMC 290 290	he Regional Board a PA staff. If a SSO on to the numeric tar Bird Egg (ug/g) 6 6	
currently under reviewe nickel is approved, the for nickel based on the 4. Selenium Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3	SO for nickel has be ed by the Regional Regional Board wi approved SSO. Water Qu (ug Total Dry Weather CCC 71 5 5 5	een submitted to th Board and U.S. E Il consider revision ality Target Selenium/L) Wet Weather CMC 290 290 NA ¹	he Regional Board a PA staff. If a SSO on to the numeric tar Bird Egg (ug/g) 6 6 6 6	
currently under reviewe nickel is approved, the for nickel based on the 4. Selenium Subwatershed Mugu Lagoon Calleguas Creek 2	SO for nickel has be ed by the Regional Regional Board wi approved SSO. Water Qu (ug Total Dry Weather CCC 71 5	een submitted to ti Board and U.S. E Il consider revision ality Target Selenium/L) Wet Weather CMC 290 290	he Regional Board a PA staff. If a SSO on to the numeric tar Bird Egg (ug/g) 6 6	

TMDL Element	Calleguas Creel	k Watershed	Metals and S	Selenium TMDL
	5. Zinc			
	Submetershed		ality Target ved Zinc/L)	Sediment Target
	Subwatershed	Dry Weather Wet Weather CCC CMC		(ppb)
	Mugu Lagoon	81	90	150000
	Calleguas Creek 2	81	90	NA ¹
	Calleguas Creek 3	338	214	NA^1
	Revolon/Beardsley	81	90	NA^1
	Conejo	365	324	NA^1
	Arroyo Simi/Las Posas	382	240	\mathbf{NA}^{1}
	¹ Sediment targets were not selec	cted as alternative ta	rget for this reach as	it is not on the 303(d) list.
	be a significant source selenium in soil may l selenium in groundw Implementation Plan sources.	action of wet a es of copper, a wet weather, a agricultural adicates natur e, naturally of be a contribut ater may be a includes spec	and dry weath zinc, and nick major source lands. ally occurring ccurring nicke ing source an a significant s ial studies to a	er. During dry el stemmed from s of copper, zinc, and g mercury in soil may el, copper, zinc, and d naturally occurring ource. The TMDL address natural
Linkage Analysis	The model was used t	dynamic wate N (HSPF). The mate of receive to calculate looge load and wate	er quality Hyd ne model outp ving water cor ad reductions aste load alloc	drologic Simulation out generally resulted accentrations for metals. necessary to meet ations were calculated
Waste Load Allocations	Waste load allocation weather. The dry-wea stream are less than 8 weather WLAs apply percentile flow rate for	ther WLAs a 6 th percentile to days when	pply to days v flow rate for flows in the	when flows in the each reach. The wet-
	POTWs Concentration-based a copper, nickel, and se			established for forms, and are applied

E Ν Τ A T I V E

T

TMDL Element	Calleg	uas Creek	Watershed	Metals and	l Selenium	TMDL		
	to POTWs	during both	wet and dry	weather. N	Aass-based	WLAs are		
	developed f	or mercury	for POTWs.	Zinc alloc	ations are n	ot set		
			ation indicat		•			
	attained. T							
			port delisting					
						ot discharge		
	to reaches l			0	•			
	included in		11					
	included to allow time for dischargers to put in place implementation measures necessary to achieve final waste load allocations. The daily maximum and monthly average interim limits are set equal to 99 th and							
	95 th percent							
	Lagoon, lov	0			U			
	submitted to	-			•	•		
	Regional B							
	copper are a will no long							
						ed WER or		
						final WLAs		
			WER or SSC					
	1. Inter	ims and Fir	nal WLAs f	or Copper	in Water C	Column		
	ротw		erim		Final*			
		CMC (ug/L)	CCC (ug/L)	CMC (ug/L)	CCC (ug/L)	lb/day		
	Hill Canyon WWTP	20.0	16.0	(a)	(a)	0.07		
	Simi Valley WQCP	(b)	(b)	29.8	29.3	(c)		
	Moorpark WTP	(b)	(b)	29.8	29.3	(d)		
	Camarillo WRP	57.0	20.0	(a)	(a)	0.07 (a)		
	Camrosa WRP	(b)	(b)	26.3	25.9	(d)		

The WER has a numeric value of 1.0. A WER study for Mugu Lagoon, lower Calleguas Creek and Revolon Slough has been submitted to the Regional Board and is currently under review by Regional Board and USEPA staff. If a WER or SSO for copper is approved, the WLAs shall be set in accordance with the approved WER or SSO, or the Regional Board will reconsider revision to the final WLAs based on the approved WER or SSO.

- (a) Concentration-based final limits will be included in the permits in accordance with NPDES guidance and requirements, but are not calculated as part of the TMDL.
- (b) Interim limits are not required because the discharger is meeting the final limits.
- (c) Discharges from Simi Valley WQCP do not reach lower Calleguas Creek and Mugu lagoon during dry weather. Monitoring will be conducted and mass-based WLAs will be evaluated if targets are not met in Arroyo Simi/Las Posas or downstream reaches.

(d) Discharger does not contribute loading during dry weather. Concentration-based WLAs apply during wet weather when discharges occur. Monitoring will be conducted and mass-based WLAs will be evaluated if targets are not met in receiving water and/or downstream reaches.

DL Element			Watershed nal WLAs f			
	2. Inter	nns anu rn				oluliili
	ротж	Inte	erim		Final	
	POTW	CMC (ug/L)	CCC (ug/L)	CMC (ug/L)	CCC (ug/L)	lb/day
	Hill Canyon WWTP	8.3	6.4	(a)	(a)	0.3
	Simi Valley WQCP	(b)	(b)	958.0	168.0	(c)
	Moorpark WTP	(b)	(b)	958.0	168.0	(d)
	Camarillo WRP	16.0	6.2	(a)	(a)	0.2
	Camrosa WRP	(b)	(b)	856.0	149.0	(d)
	A study to sup currently undo nickel is appro- nickel based of 3. Inter- Sedin	oport a SSO for er reviewed by oved, the Region on the approve ims and Fin	v the Regional onal Board wi d SSO. nal WLAs f	een submitted Board and U. Ill consider re for Mercur	to the Region S. EPA staff. vision to the f	nal Board an If a SSO fé ïnal WLAs nded
	stringen where th sedimen concent	t than the nute total load t load. Intration obser	fluent conce umeric targe in water is erim WLAs ved in efflue	entrations wets multiplie assumed equipments of the second	which are cu ed by the de ual to the s ed on 90 th I	rrently m sign flow uspended percentile
	stringen where th sedimen concent	t than the nume total load t load. Int	fluent conce imeric targe in water is erim WLAs ved in efflue nditions.	entrations wets multiplie assumed equipations of the second secon	which are cu ed by the de ual to the s ed on 90 th I	rrently m sign flow uspended percentile
	stringen where th sedimen concentr apply to	t than the numerical load t load. Intration obser all flow con	fluent conce imeric targe in water is erim WLAs ved in efflue nditions.	entrations wets multiplie assumed eq for are base ent discharg Final (Ib/month)	which are cu to by the de ual to the s ed on 90 th p ge and desig	rrently m sign flow uspended percentile
	stringen where th sedimen concentr apply to P Hill Canyo	t than the numerical load t load. Intration obser all flow con OTW	fluent conce imeric targe in water is erim WLAs ved in efflue nditions. Interim (Ib/month) 0.23	entrations wets multiplie assumed eq for are base ent discharg Final (Ib/month) 0.022	which are cu to by the de ual to the s ed on 90 th p ge and desig	rrently m sign flow uspended percentile
	stringen where th sedimen concentr apply to P Hill Canyo Simi Valle	t than the numerical load t load. Intration obser all flow con OTW on WWTP by WQCP	fluent conce imeric targe in water is erim WLAs ved in efflue nditions.	entrations wets multiplie assumed eq for are basent discharge (Ib/month) 0.022 0.031	which are cu to by the de ual to the s ed on 90 th p ge and desig	rrently m sign flow uspended percentile
	stringen where th sedimen concentr apply to P Hill Canyo Simi Valle Moorpark	t than the numerical load t load. Intration obser all flow cont ortwork with the symmetry wy WQCP wy P	fluent conce imeric targe in water is erim WLAs ved in efflue nditions. Interim (Ib/month) 0.23	entrations wets multiplie assumed eq for are base ent discharg Final (Ib/month) 0.022	which are cu to by the de ual to the s ed on 90 th p ge and desig	rrently m sign flow uspended percentile
	stringen where th sedimen concentr apply to P Hill Canyo Simi Valle	t than the numerical load t load. Intration obser all flow controls on WWTP wy WQCP WTP WRP	fluent conce imeric targe in water is erim WLAs ved in efflue nditions.	entrations wets multiplie assumed eq for are basent discharge (Ib/month) 0.022 0.031	which are cu to by the de ual to the s ed on 90 th p ge and desig	rrently m sign flow uspended percentile

MDL Element	Callegu	as Creek	vv atel sh	leu meta	is and Sei			
	Urban Runo	ff						
	I. Interir	n Limits a	and Fina	l Waste I	Load Allo	cations	for	
	Сорре	r, Nickel,	and Sele	enium				
					ations are	applied i	in receiv	ing
	water.	i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii			unons ure	applica		g
	water.							
	A Int	erim Lim	its					
			as and Cone	io Creek	R	evolon Slo	ouah	
	Constituents	Dry CMC	Dry CCC	Wet CMC		Dry CCC	-	IC
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	
	Copper	23	19	204	23	19	204	
	Nickel	15	13	(a)	15	13	(a)	
	Selenium	(b)	(b)	(b)	14 (c)	13 (c)	(a)	*
	. ,		ot exceed the	FMDL under	wet conditions	interim limi	its are not	
	(b) Seleniur		ave not been d	leveloned for	this reach as it	is not on the	: 303(d) list	
					watershed-wide			
			imits will be e	evaluated in c	onsideration of	background	loading data	, if
	available	.						
	B. Final	WLAs						
	1 Dry-V	Veather V	VI As in	Water (olumn (ll	(veh/ar		
	1. Dry-V	Veather V	WLAs in	Water C	Column (ll	os/day)		
	1. Dry-V	-					ah	1
	Flow	-	as and Con	ejo Creek		volon Sloug	-	
		-	as and Con Average	ejo Creek Elevated		volon Sloue	Elevated	
	Flow Range	Callegu Low Flow	as and Con Average Flow	ejo Creek Elevated Flow	Rev Low Flow	volon Sloug Average Flow	Elevated Flow	
	Flow Range Copper*	Callegu Low Flow 0.030	as and Con Average Flow 0.040	ejo Creek Elevated Flow 0.100	Rev Low Flow	volon Sloug Average Flow 0.030	Elevated Flow 0.101	
	Flow Range	Callegu Low Flow	as and Con Average Flow	ejo Creek Elevated Flow	Rev Low Flow	volon Sloug Average Flow	Elevated Flow	
	Flow Range Copper* Nickel Selenium * The WER	Callegu Low Flow 0.030 0.100 (a)	as and Cone Average Flow 0.040 0.120 (a) e value of 1.0.	Elevated Flow 0.100 0.440 (a) A WER stud	Rev Low Flow 0.019 0.050 0.004 dy for Mugu La	volon Sloug Average Flow 0.030 0.069 0.003 goon, lower	Elevated Flow 0.101 0.116 0.004 Calleguas Cr	
	Flow Range Copper* Nickel Selenium * The WER and Revo	Callegu Low Flow 0.030 0.100 (a) t has a numeric olon Slough ha	as and Cone Average Flow 0.040 0.120 (a) c value of 1.0. as been submit	Elevated Flow 0.100 0.440 (a) A WER stud ted to the Res	Low Flow0.0190.0500.004dy for Mugu Lagional Board ar	Average Flow 0.030 0.069 0.003 goon, lower d is currentl	Elevated Flow 0.101 0.116 0.004 Calleguas Calleguas Call	ew by
	Flow Range Copper* Nickel Selenium * The WEB and Revo Regional	Callegu Low Flow 0.030 0.100 (a) thas a numeric olon Slough ha Board and US	as and Cone Average Flow 0.040 0.120 (a) value of 1.0. as been submit EPA staff. If	Elevated Flow 0.100 0.440 (a) A WER stud ted to the Res a WER or SS	Low Flow0.0190.0500.004dy for Mugu Lagional Board arGO for copper is	volon Sloug Average Flow 0.030 0.069 0.003 goon, lower d is currentl approved, tl	Elevated Flow 0.101 0.116 0.004 Calleguas Cr ly under revid he WLAs sha	ew by
	Flow Range Copper* Nickel Selenium * The WEB and Revo Regional set in acc	Callegu Low Flow 0.030 0.100 (a) thas a numeric olon Slough ha Board and US	as and Cone Average Flow 0.040 0.120 (a) value of 1.0. as been submit EPA staff. If he approved V	ejo Creek Elevated Flow 0.100 0.440 (a) A WER stud ted to the Re a WER or SS VER or SSO,	Low Flow0.0190.0500.004y for Mugu Lagional Board arO for copper isor the Regional	volon Sloug Average Flow 0.030 0.069 0.003 goon, lower d is currentl approved, tl	Elevated Flow 0.101 0.116 0.004 Calleguas Cr ly under revid he WLAs sha	ew by
	Flow Range Copper* Nickel Selenium * The WER and Revo Regional set in acc revision	Callegu Low Flow 0.030 0.100 (a) thas a numeric olon Slough ha Board and US ordance with t to the final WL	Average Flow 0.040 0.120 (a) value of 1.0. is been submit EPA staff. If he approved V As based on t	Elevated Flow 0.100 0.440 (a) A WER stud ted to the Re a WER or SS VER or SSO, he approved V	Low Flow0.0190.0500.004dy for Mugu La gional Board ar 30 for copper is or the RegionaWER or SSO.	volon Sloug Average Flow 0.030 0.069 0.003 goon, lower d is currentl approved, tl 1 Board will	Elevated Flow 0.101 0.116 0.004 Calleguas Cr ly under revie he WLAs sha reconsider	ew by
	Flow Range Copper* Nickel Selenium * The WEE and Revo Regional set in acc revision (a) Selenium	Callegu Low Flow 0.030 0.100 (a) thas a numeric olon Slough ha Board and US ordance with t to the final WL allocations ha	as and Cone Average Flow 0.040 0.120 (a) c value of 1.0. is been submit EPA staff. If he approved V As based on t ve not been do	ejo Creek Elevated Flow 0.100 0.440 (a) A WER stud ted to the Reg a WER or SS VER or SSO, he approved '	Low Flow0.0190.0500.004dy for Mugu La gional Board ar SO for copper is or the Regiona WER or SSO.WER or SSO.	volon Sloug Average Flow 0.030 0.069 0.003 goon, lower dd is currentl approved, tl 1 Board will s not on the 2	Elevated Flow 0.101 0.116 0.004 Calleguas C. ly under revie he WLAs sha reconsider 303(d) list.	ew by
	Flow Range Copper* Nickel Selenium * The WEE and Revo Regional set in acc revision (a) Selenium	Callegu Low Flow 0.030 0.100 (a) thas a numeric olon Slough ha Board and US ordance with t to the final WL allocations ha	as and Cone Average Flow 0.040 0.120 (a) c value of 1.0. is been submit EPA staff. If he approved V As based on t ve not been do	ejo Creek Elevated Flow 0.100 0.440 (a) A WER stud ted to the Reg a WER or SS VER or SSO, he approved '	Low Flow0.0190.0500.004dy for Mugu La gional Board ar 30 for copper is or the RegionaWER or SSO.	volon Sloug Average Flow 0.030 0.069 0.003 goon, lower dd is currentl approved, tl 1 Board will s not on the 2	Elevated Flow 0.101 0.116 0.004 Calleguas C. ly under revie he WLAs sha reconsider 303(d) list.	ew by
	Flow Range Copper* Nickel Selenium * The WEF and Revo Regional set in acc revision (a) Selenium Impleme	Callegu Low Flow 0.030 0.100 (a) thas a numeric olon Slough ha Board and US ordance with t to the final WL allocations ha nutation actions	as and Cone Average Flow 0.040 0.120 (a) value of 1.0. as been submit EPA staff. If he approved V As based on t ve not been de include consi	ejo Creek Elevated Flow 0.100 0.440 (a) A WER stud ted to the Reg a WER or SS VER or SSO, he approved ' eveloped for t deration of th	Low Flow 0.019 0.050 0.004 dy for Mugu La gional Board ar SO for copper is or the Regiona WER or SSO. this reach as it i te watershed-with	volon Sloug Average Flow 0.030 0.069 0.003 goon, lower d is currentl approved, til 1 Board will s not on the 4 de selenium	Elevated Flow 0.101 0.116 0.004 Calleguas Cr ly under revie he WLAs sha reconsider 303(d) list. impacts.	ew by
	Flow Range Copper* Nickel Selenium * The WEF and Revo Regional set in acc revision (a) Selenium Impleme	Callegu Low Flow 0.030 0.100 (a) thas a numeric olon Slough ha Board and US ordance with t to the final WL allocations ha nutation actions	as and Cone Average Flow 0.040 0.120 (a) value of 1.0. as been submit EPA staff. If he approved V As based on t ve not been de include consi	ejo Creek Elevated Flow 0.100 0.440 (a) A WER stud ted to the Reg a WER or SS VER or SSO, he approved ' eveloped for t deration of th	Low Flow0.0190.0500.004dy for Mugu La gional Board ar SO for copper is or the Regiona WER or SSO.WER or SSO.	volon Sloug Average Flow 0.030 0.069 0.003 goon, lower d is currentl approved, til 1 Board will s not on the 4 de selenium	Elevated Flow 0.101 0.116 0.004 Calleguas Cr ly under revie he WLAs sha reconsider 303(d) list. impacts.	ew by
	Flow Range Copper* Nickel Selenium * The WEF and Revo Regional set in acc revision (a) Selenium Impleme 2. Wet-V	Callegu Low Flow 0.030 0.100 (a) thas a numeric olon Slough has Board and US ordance with t to the final WL allocations ha antation actions	as and Cond Average Flow 0.040 0.120 (a) e value of 1.0. as been submit EPA staff. If the approved V As based on t ve not been dd include consi	Elevated Flow 0.100 0.440 (a) A WER stud ted to the Reg a WER or SS VER or SSO, he approved V eveloped for t deration of th	Low Flow 0.019 0.050 0.004 dy for Mugu La gional Board ar SO for copper is or the Regiona WER or SSO. this reach as it i the watershed-with Column (I	Average Flow 0.030 0.069 0.003 goon, lower di is currentl approved, tl l Board will s not on the i de selenium	Elevated Flow 0.101 0.116 0.004 Calleguas Cr ly under revie he WLAs sha reconsider 303(d) list. impacts.	ew by
	Flow Range Copper* Nickel Selenium * The WEF and Revo Regional set in acc revision (a) Selenium Impleme 2. Wet-V	Callegu Low Flow 0.030 0.100 (a) thas a numeric olon Slough ha Board and US ordance with t to the final WL allocations ha ntation actions Weather V	as and Cond Average Flow 0.040 0.120 (a) c value of 1.0. is been submit EPA staff. If he approved W As based on t ve not been de include consi WLAS in alleguas Cre	ejo Creek Elevated Flow 0.100 0.440 (a) A WER stud ted to the Reg a WER or SS VER or SSO, he approved V eveloped for t deration of th Water ek	Low Flow 0.019 0.050 0.004 dy for Mugu La gional Board ar SO for copper is or the Regiona WER or SSO. this reach as it i the watershed-with Column (1 Revolution	Average Flow 0.030 0.069 0.003 goon, lower di is currentl approved, ti l Board will s not on the de selenium (bs/day) n Slough	Elevated Flow 0.101 0.116 0.004 Calleguas Cr ly under revie he WLAs sha reconsider 303(d) list. impacts.	ew by
	Flow Range Copper* Nickel Selenium * The WEF and Revo Regional set in acc revision (a) Selenium Impleme 2. Wet-V	Callegu Low Flow 0.030 0.100 (a) thas a numeric olon Slough ha Board and US ordance with t to the final WL allocations ha ntation actions Weather V	Average Flow 0.040 0.120 (a) value of 1.0. is been submit EPA staff. If he approved V As based on t ve not been de include consi WLAs in alleguas Cre 2/2+0.0168*(0)	ejo Creek Elevated Flow 0.100 0.440 (a) A WER stud ted to the Reg a WER or SS VER or SSO, he approved V eveloped for t deration of th Water ek Q-0.106	Low Flow 0.019 0.050 0.004 dy for Mugu La gional Board ar SO for copper is or the Regiona WER or SSO. this reach as it i the watershed-with Column (I Revolution 0.0002*Q^2+0	Average Flow 0.030 0.069 0.003 goon, lower di is currentl approved, ti l Board will s not on the de selenium (bs/day) n Slough .0005*Q	Elevated Flow 0.101 0.116 0.004 Calleguas Cr ly under revie he WLAs sha reconsider 303(d) list. impacts.	ew by
	Flow Range Copper* Nickel Selenium * The WEF and Revo Regional set in acc revision (a) Selenium Impleme 2. Wet-V Constitue Copper* Nickel	Callegu Low Flow 0.030 0.100 (a) thas a numeric olon Slough ha Board and US ordance with t to the final WL allocations ha ntation actions Weather V nt Ca 0.00054*C 0.014*Q^2	Average Flow 0.040 0.120 (a) value of 1.0. is been submit EPA staff. If he approved V As based on t ve not been de include consi WLAs in alleguas Cre 2/2+0.0168*(0)	ejo Creek Elevated Flow 0.100 0.440 (a) A WER stud ted to the Rey a WER or SS VER or SSO, he approved V eveloped for t deration of th Water ek Q-0.106 0	Revolution Low Flow 0.019 0.050 0.004 dy for Mugu La gional Board ar 30 for copper is or the Regiona WER or SSO. this reach as it is the watershed-with Column (I Revolution 0.002*Q^2+0 0.027*Q^2+0	Average Flow 0.030 0.069 0.003 goon, lower di is currentl approved, tl l Board will s not on the de selenium bs/day) n Slough .0005*Q .7*Q	Elevated Flow 0.101 0.116 0.004 Calleguas Cr ly under revie he WLAs sha reconsider 303(d) list. impacts.	ew by
	Flow Range Copper* Nickel Selenium * The WEF and Revo Regional set in acc revision 1 (a) Selenium (a) Selenium (a) Selenium Constitue Copper* Nickel Selenium	Callegu Low Flow 0.030 0.100 (a) thas a numeric olon Slough ha Board and US ordance with t to the final WL allocations ha ntation actions Weather V nt Ca 0.00054*C 0.014*Q^2 (a)	Average Flow 0.040 0.120 (a) value of 1.0. is been submit EPA staff. If he approved V As based on t ve not been do include consi WLAs in alleguas Cre 2/2+0.0168*(2+0.82*Q	ejo Creek Elevated Flow 0.100 0.440 (a) A WER stud ted to the Rey a WER or SS VER or SSO, he approved ' eveloped for t deration of th Water ek Q-0.106 0 0 0 0 0 0 0 0 0 0 0 0 0	Revolution Low Flow 0.019 0.050 0.004 dy for Mugu La gional Board ar SO for copper is or the Regiona WER or SSO. this reach as it i the watershed-with Column (I Revolution 0.002*Q^2+0.4 0.027*Q^2+0.4	Average Flow 0.030 0.069 0.003 goon, lower di is currentl approved, tl 1 Board will s not on the de selenium bs/day) n Slough 0.005*Q .7*Q .7*Q	Elevated Flow 0.101 0.116 0.004 Calleguas C. ly under revie he WLAs sha reconsider 303(d) list. impacts.	ew by all be
	Flow Range Copper* Nickel Selenium * The WEF and Revo Regional set in acc revision ; (a) Selenium (a) Selenium (a) Selenium Constitue Copper* Nickel Selenium * The WER	Callegu Low Flow 0.030 0.100 (a) thas a numeric olon Slough ha Board and US ordance with t to the final WL allocations ha ntation actions Weather V nt Ca 0.00054*C 0.014*Q^2 (a) has a numeric	as and Cond Average Flow 0.040 0.120 (a) c value of 1.0. is been submit EPA staff. If he approved V As based on t ve not been dd include consi WLAS in Elleguas Cre 2/2+0.0168*(0 2+0.82*Q value of 1.0.	ejo Creek Elevated Flow 0.100 0.440 (a) A WER stud ted to the Reg a WER or SS VER or SSO, he approved V eveloped for t deration of th Water ek Q-0.106 0 A WER stud	Revolution Low Flow 0.019 0.050 0.004 dy for Mugu La gional Board ar 30 for copper is or the Regiona WER or SSO. this reach as it i the watershed-with Column (I Revolution 0.002*Q^2+0.4 0.027*Q^2+0.4 0.027*Q^2+0.4 y for Mugu Lag	Average Flow 0.030 0.069 0.003 goon, lower di is currentl approved, tl 1 Board will s not on the de selenium (bs/day) n Slough .0005*Q .7*Q .7*Q .000, lower (0)	Elevated Flow 0.101 0.116 0.004 Calleguas Cr ly under revie he WLAs sha reconsider 303(d) list. impacts.	ew by all be eek
	Flow Range Copper* Nickel Selenium * The WEF and Revo Regional set in acc revision ; (a) Selenium (a) Selenium (a) Selenium Constituen Copper* Nickel Selenium * The WER and Revo	Callegu Low Flow 0.030 0.100 (a) thas a numeric ordance with t allocations ha ntation actions Weather t t Ca 0.00054*C 0.014*Q^2 (a) has a numeric olon Slough ha	as and Cond Average Flow 0.040 0.120 (a) c value of 1.0. is been submit EPA staff. If he approved V As based on t ve not been dd include consi WLAS in Alleguas Cre 2 ^A 2+0.0168*(C 2+0.82*Q value of 1.0. is been submit	ejo Creek Elevated Flow 0.100 0.440 (a) A WER stud ted to the Reg a WER or SS VER or SSO, he approved V eveloped for t deration of th Water ek Q-0.106 0 A WER stud ted to the Reg	Revolution Low Flow 0.019 0.050 0.004 dy for Mugu La gional Board ar SO for copper is or the Regiona WER or SSO. this reach as it i the watershed-with Column (I Revolution 0.002*Q^2+0.4 0.027*Q^2+0.4	Average Flow 0.030 0.069 0.003 goon, lower di is currentl approved, tl Board will s not on the 2 de selenium (bs/day) n Slough .0005*Q .7*Q .7*Q goon, lower O di is currentl	Elevated Flow 0.101 0.116 0.004 Calleguas Cr y under revie he WLAs sha reconsider 303(d) list. impacts.	eek ew by
	Flow Range Copper* Nickel Selenium * The WEF and Revo Regional set in acc revision (a) Selenium (a) Selenium (a) Selenium (a) Selenium 2. Wet-V Constitue Copper* Nickel Selenium * The WER and Revo Regional set in acc	Callegu Low Flow 0.030 0.100 (a) thas a numeric olon Slough has Board and US ordance with t allocations ha antation actions Weather nt Callegu has a numeric 0.00054*C 0.014*Q^2 (a) has a numeric olon Slough has Board and US ordance with t	as and Cond Average Flow 0.040 0.120 (a) c value of 1.0. as been submit EPA staff. If he approved V As based on t we not been da include consi WLAS im Illeguas Cre 0 ² 2+0.0168*(C 2+0.82*Q value of 1.0. as been submit EPA staff. If he approved V value of 1.0.	ejo Creek Elevated Flow 0.100 0.440 (a) A WER stud- ted to the Reg a WER or SSO, he approved V eveloped for t deration of th Water ek Q-0.106 0 0 A WER stud- ted to the Reg a WER or SSO, 0 0 0 0 0 0 0 0 0 0 0 0 0	Revolution Low Flow 0.019 0.050 0.004 dy for Mugu La gional Board ar GO for copper is or the Regiona WER or SSO. this reach as it i the watershed-with Column (I Revolu 0.002*Q^2+0 0.027*Q^2+0.4 y for Mugu Lag gional Board ar GO for copper is or the Regiona	Average Flow 0.030 0.069 0.003 goon, lower di is currentl approved, ti l Board will s not on the 2 de selenium (bs/day) n Slough .0005*Q .7*Q .7*Q goon, lower of di s currentl approved, ti	Elevated Flow 0.101 0.116 0.004 Calleguas Cr y under revie he WLAs sha reconsider 303(d) list. impacts.	eek ew by
	Flow Range Copper* Nickel Selenium * The WEF and Revo Regional set in acc revision (a) Selenium (a) Selenium (a) Selenium (a) Selenium 2. Wet-V Constitue Copper* Nickel Selenium * The WER and Revo Regional set in acc	Callegu Low Flow 0.030 0.100 (a) thas a numeric olon Slough has Board and US ordance with t allocations ha ntation actions Weather nt Callegu has a numeric 0.00054*C 0.014*Q^2 (a) has a numeric board and US	as and Cond Average Flow 0.040 0.120 (a) c value of 1.0. as been submit EPA staff. If he approved V As based on t we not been da include consi WLAS im Illeguas Cre 0 ² 2+0.0168*(C 2+0.82*Q value of 1.0. as been submit EPA staff. If he approved V value of 1.0.	ejo Creek Elevated Flow 0.100 0.440 (a) A WER stud- ted to the Reg a WER or SSO, he approved V eveloped for t deration of th Water ek Q-0.106 0 0 A WER stud- ted to the Reg a WER or SSO, 0 0 0 0 0 0 0 0 0 0 0 0 0	Revolution Low Flow 0.019 0.050 0.004 dy for Mugu La gional Board ar GO for copper is or the Regiona WER or SSO. this reach as it i the watershed-with Column (I Revolu 0.002*Q^2+0 0.027*Q^2+0.4 y for Mugu Lag gional Board ar GO for copper is or the Regiona	Average Flow 0.030 0.069 0.003 goon, lower di is currentl approved, ti l Board will s not on the 2 de selenium (bs/day) n Slough .0005*Q .7*Q .7*Q goon, lower of di s currentl approved, ti	Elevated Flow 0.101 0.116 0.004 Calleguas Cr y under revie he WLAs sha reconsider 303(d) list. impacts.	eek ew by
	Flow Range Copper* Nickel Selenium * The WEF and Revo Regional set in acc revision 1 (a) Selenium (a) Selenium (a) Selenium (a) Selenium 2. Wet-V Constitue Copper* Nickel Selenium * The WER and Revo Regional set in acc revision 1	Callegu Low Flow 0.030 0.100 (a) Chas a numeric lon Slough ha Board and US ordance with t allocations ha ntation actions Weather Ca 0.00054*C 0.014*Q^2 (a) has a numeric lon Slough ha Board and US ordance with t to the final WL	as and Cond Average Flow 0.040 0.120 (a) value of 1.0. as been submit EPA staff. If he approved V As based on t ve not been do include consi WLAS im Illeguas Cre 2/2+0.0168*(2+0.82*Q value of 1.0. as been submit EPA staff. If he approved V As based on t	ejo Creek Elevated Flow 0.100 0.440 (a) A WER stud- ted to the Reg a WER or SSO, he approved Y eveloped for t deration of th Water ek Q-0.106 0 A WER stud- ted to the Reg a WER or SSO, he approved Y	Rev Low Flow 0.019 0.050 0.004 dy for Mugu La gional Board ar SO for copper is or the Regiona WER or SSO. this reach as it i te watershed-wid Column (I Revolo 0.002*Q^2+0.4 0.002*Q^2+0.4 y for Mugu Board ar GO for copper is or the Regiona WER or SSO.	Average Flow 0.030 0.069 0.003 goon, lower d is currentl approved, til 1 Board will s not on the a de selenium (bs/day) n Slough 0.0005*Q .7*Q .7*Q .7*Q d is currentl approved, til 1 Board will	Elevated Flow 0.101 0.116 0.004 Calleguas Cr ly under revie he WLAs sha reconsider 303(d) list. impacts.	eek ew by
	Flow Range Copper* Nickel Selenium * The WEF and Revo Regional set in acc revision f (a) Selenium (a) Selenium 2. Wet-V Constitue Copper* Nickel Selenium * The WER and Revo Regional set in acc revision f (a) Selenium	Callegu Low Flow 0.030 0.100 (a) Chas a numeric lon Slough ha Board and US ordance with t allocations ha ntation actions Weather Ca 0.00054*C 0.014*Q^2 (a) has a numeric lon Slough ha Board and US ordance with t to the final WL allocations ha	as and Cond Average Flow 0.040 0.120 (a) value of 1.0. as been submit EPA staff. If he approved V As based on t ve not been da include consi WLAS im illeguas Cre 2/2+0.0168*(C 2+0.82*Q value of 1.0. as been submit EPA staff. If he approved V As based on t ve not been da ve not been da include consi WLAS im illeguas Cre 2/2+0.0168*(C 2+0.82*Q value of 1.0. as been submit EPA staff. If he approved V As based on t ve not been da ve not been da	ejo Creek Elevated Flow 0.100 0.440 (a) A WER stud ted to the Reg a WER or SS WER or SSO, he approved for t deration of th Water ek Q-0.106 0 A WER stud ted to the Reg a WER or SS VER or SSO, he approved for t	Revolution Low Flow 0.019 0.050 0.004 dy for Mugu La gional Board ar GO for copper is or the Regiona WER or SSO. this reach as it i the watershed-with Column (I Revolu 0.002*Q^2+0 0.027*Q^2+0.4 y for Mugu Lag gional Board ar GO for copper is or the Regiona	volon Sloug Average Flow 0.030 0.069 0.003 goon, lower approved, til 1 Board will s not on the 3 de selenium Ibs/day) n Slough .0005*Q .7*Q goon, lower Q .3 approved, til Board will s not on the 3 s poon, lower Q .7*Q .7*Q .7*Q .7*Q .3 approved, til Board will s not on the 3	Elevated Flow 0.101 0.116 0.004 Calleguas Cr ly under revie he WLAs sha reconsider 303(d) list. impacts. Calleguas Cr ly under revie he WLAs sha reconsider 303(d) list.	eek ew by
	Flow Range Copper* Nickel Selenium * The WEF and Revo Regional set in acc revision f (a) Selenium (a) Selenium 2. Wet-V Constitue Copper* Nickel Selenium * The WER and Revo Regional set in acc revision f (a) Selenium	Callegu Low Flow 0.030 0.100 (a) thas a numeric olon Slough ha Board and US ordance with t to the final WL allocations ha ntation actions Weather V nt Ca 0.00054*C 0.014*Q^22 (a) has a numeric olon Slough ha Board and US ordance with t to the final WL allocations ha ntation actions ha ntation actions ha	as and Cond Average Flow 0.040 0.120 (a) value of 1.0. as been submit EPA staff. If he approved V As based on t ve not been da include consi WLAS im illeguas Cre 2/2+0.0168*(C 2+0.82*Q value of 1.0. as been submit EPA staff. If he approved V As based on t ve not been da ve not been da include consi WLAS im illeguas Cre 2/2+0.0168*(C 2+0.82*Q value of 1.0. as been submit EPA staff. If he approved V As based on t ve not been da ve not been da	ejo Creek Elevated Flow 0.100 0.440 (a) A WER stud ted to the Reg a WER or SS WER or SSO, he approved for t deration of th Water ek Q-0.106 0 A WER stud ted to the Reg a WER or SS VER or SSO, he approved for t	Revolution Low Flow 0.019 0.050 0.004 dy for Mugu La gional Board ar SO for copper is or the Regional WER or SSO. this reach as it i te watershed-wid Column (I Revolu 0.002*Q^2+0.4 0.002*Q^2+0.4 0.027*Q^2+0.4 y for Mugu Board ar GO for copper is or the Regional WER or SSO. this reach as it i	volon Sloug Average Flow 0.030 0.069 0.003 goon, lower approved, til 1 Board will s not on the 3 de selenium Ibs/day) n Slough .0005*Q .7*Q goon, lower Q .3 approved, til Board will s not on the 3 s poon, lower Q .7*Q .7*Q .7*Q .7*Q .3 approved, til Board will s not on the 3	Elevated Flow 0.101 0.116 0.004 Calleguas Cr ly under revie he WLAs sha reconsider 303(d) list. impacts. Calleguas Cr ly under revie he WLAs sha reconsider 303(d) list.	eek ew by

	Sediment (I Final WLAs nterim limi	l bs/y s are its fo annu	set at 8 or mercu al load the ye	30% reduct ary in susp within eac	s for Mercu tion from H ended sedin th flow cate 003.	SPF load e ment are se	estimates.	
	nterim limi he highest a ISPF outpu	its fo annu	or merce al load the ye	ury in susp within eac	ended sedir th flow cate	ment are se	et equal to	
0-1	Flow Range							
0-1	Flow Range		Calle	guas Creek	Bevolor	Revolon Slough		
0-1		•	Interin (Ibs/yr	n Final	Interim (Ibs/yr)	Final (Ibs/yr)		
	5,000 MGY		3.3	0.4	1.7	0.1		
15,	000-25,000 MC	GΥ	10.5	1.6	4	0.7		
Ab	ove 25,000 MC	βY	64.6	9.3	10.2	1.8		
MG	Y: million gallo	ns per	year.					
I.			or Cop	A /	<i>.</i>	Sele	enium	
Reach	Final Dry CCC (ug/L)			Final Dry CCC (ug/L)	Final Wet CMC (ug/L)	Final Dry CCC (ug/L)	Final Wet CMC (ug/L)	
1	3.1		4.8	8.2	74	(b)	(b)	
2	3.1			8.2	74	(b)	(b)	
							(b)	
-							290 290	
						-	(b)	
7	()			()		()	(b)	
8	(a)			(a)	958	(b)	(b)	
9	27.9		41.6	160	1292	(b)	(b)	
10	27.9			160	1292	(b)	(b)	
11	27.9			160	1292	(b)	(b)	
						()	(b)	
 * The W Revolon S Board and with the ap on the approximation (a) Disch weath (b) Selen 	 * The WER has a numeric value of 1.0. A WER study for Mugu Lagoon, lower Calleguas Creek and Revolon Slough has been submitted to the Regional Board and is currently under review by Regional Board and USEPA staff. If a WER or SSO for copper is approved, the WLAs shall be set in accordance with the approved WER or SSO, or the Regional Board will reconsider revision to the final WLAs based on the approved WER or SSO. (a) Discharges from these reaches do not reach lower Calleguas Creek and Mugu Lagoon during dry weather. Allocations are not required for these reaches. (b) Selenium waste load allocations have not been developed for this reach as it is not on the 303(d) list. Implementation actions include consideration of the watershed-wide selenium impacts. 							
	MG Final V I. Reach 1 2 3 4 5 6 7 8 9 10 11 12 13 * The W Revolon SI Board and with the appoint of the appoint (a) Disch weath (b) Selen Imple II.	MGY: million galloMGY: million galloFinal WLAs for (CIFinal WLCopReachFinal Dry CCC (ug/L)13.123.1325.943.153.16(a)7(a)8(a)927.91027.91127.91227.91327.9*The WER has a numeriRevolon Slough has beenBoard and USEPA staff. Ifwith the approved WER or S(a)Discharges from these weather. Allocations(b)Selenium waste load a Implementation actionII.Final WLThere is insufficie	Final WLAs for Other I. Final WLAs for Copper* Reach Final Dry CCC (ug/L) Final CMG 1 3.1 2 2 3.1 3 3 25.9 3 4 3.1 5 5 3.1 6 6 (a) 3 9 27.9 3 10 27.9 3 12 27.9 3 13 27.9 3 13 27.9 3 6 (a) 3 9 27.9 3 11 27.9 3 12 27.9 3 13 27.9 3 * The WER has a numeric valu Revolon Slough has been submit Board and USEPA staff. If a WE with the approved WER or SSO. (a) Discharges from these reach weather. Allocations are now (b) Selenium waste load allocati I	MGY: million gallons per year.Final WLAs for CopI. Final WLAs for CopReachFinal Dry CCC (ug/L)Final Wet CMC (ug/L)13.14.823.14.8325.926.343.14.853.14.86(a)29.87(a)29.8927.941.61027.941.61127.941.61227.941.61327.941.614327.98(a)29.8927.941.61127.941.61327.941.61427.941.61527.941.6161327.98(a)29.8910.07.9113.11227.91327.941.613148810.01027.911.61327.941.61414.8153.11615171618181910.01010.01010.01110.01210.01310.01410.01514161517161818<	Image:	MGY: million gallons per year. Final WLAs for Other NPDES Dischargers I. Final WLAs for Copper, Nickel, and Sele Copper* Nickel, and Sele Reach Final Dry Final Wet Final Dry Final Wet CCC (ug/L) 1 3.1 4.8 8.2 74 2 3.1 4.8 8.2 74 3 25.9 26.3 149 856 4 3.1 4.8 8.2 74 5 3.1 4.8 8.2 74 5 3.1 4.8 8.2 74 5 3.1 4.8 8.2 74 6 (a) 29.8 (a) 958 7 (a) 29.8 (a) 958 9 27.9 41.6 160 1292 10 27.9 41.6 160 1292 11 27.9 41.6 160 1292 12 27.9 41.6 160 <t< td=""><td>MGY: million gallons per year. Final WLAs for Other NPDES Dischargers I. Final WLAs for Copper, Nickel, and Selenium</td></t<>	MGY: million gallons per year. Final WLAs for Other NPDES Dischargers I. Final WLAs for Copper, Nickel, and Selenium	

E Ν T A T Ι V E

TMDL Element	Call	eguas Cree	k Wate	ershed M	letals a	nd Seler	nium TN	ADL		
	1	0.051 (ug/L) umn target f only.				U				
Load Allocation	open space recoverab The dry-ve than 86 th apply to d for each r copper an I. Inter Selem	ims and Fi	As are of apply ow rate lows in argin of nal Loa	r copper, developed to days w for each the stream safety of ad Alloca	nickel, d for bo hen flo reach. m excee 15% w	and sele th wet an ws in the The wet d 86 th pu as inclue or Copp	nium in t nd dry-w e stream -weather ercentile ded in the ber, Nick	total eather. are less LAs flow rate e LAs for el, and		
	Interim limits and load allocations are applied in receiving water at the compliance points.									
	A. Interim Limits									
			-	Conejo Cre			olon Sloug			
	Constituents Dry CM				CMC	ry CMC	Dry CCC	Wet CMC		
		(ug/L)	-		g/L)	(ug/L)	(ug/L)	(ug/L)		
	Copper	24	19		390	24	19	1390		
	Nickel	43	42		a)	43	42	(a)		
	(a) The	(b) e current loads do	(b	/	/	6.7 (c)	6 (c)	(a) *		
	 required. (b) Selenium allocations have not been developed for this reach as it is not on the 303(d) list. Implementation actions includes consideration of watershed-wide selenium impacts. (c) Attainment of interim limits will be evaluated in consideration of background loading data, if available. B. Final Load Allocation Dry Weather LAs in Water Column (lbs/day) 									
			C	Calleguas C	reek		Revolon Sl	ough		
	Con	stituent	Low Flow	Average Flow	Elevate Flow	d Low Flow	Average Flow	Elevated Flow		
		Agriculture	0.040	0.040	0.170	0.043	0.070	0.280		
	Copper*	Open Space	0.150	0.080	0.130	0.050	0.120	0.110		
	Nichel	Agriculture	0.420	0.260	0.970	0.390	0.690	1.600		
	Nickel	Open Space	0.450	0.420	0.560	0.010	0.020	0.020		
	Selenium	Agriculture	(a)	(a)	(a)	0.008	0.007	0.018		
		Open Space	(a)	(a)	(a)	0.180	0.310	0.490		
	Revolon Sloug	R has a numeric va gh has been subm	itted to the		ard and is c s approved.	urrently und the LAs sh	er review by	Regional accordance		

TMDL Element	Calle	guas C	reek V	Vaters	hed M	etals a	nd Sele	nium	TMD	Ĺ
	2. We	et Weat	her LA	As in V	Water (Colum	n (lbs/d	lay)		
	Ognatitusent	1		0-				Daviala	m Claumh	
	Constituent				lleguas Ci ^2+0.0053		4 0.001		on Slough -0.0034*Q	
	Copper*	Agricultu Open Spa							2+0.0034 Q	°5*O
		Agricultu		0.0000537*Q^2+0.00321*Q 0.014*Q^2+0.82*Q				*Q^2+0.4		<u> </u>
	Nickel	Open Spa)14*Q^2				*Q^2+0.4		
		Agricultu			10.02 Q			^2+1.8*(
	Selenium	Open Spa						*Q^2+0.4		
	* The WER				WER study	for Mu	gu Lagoon, l			ek and
		PA staff. If ed WER or 'ER or SSO allocations tation action	f a WER of SSO, or t have not l	or SSO fo he Region	r copper is a nal Board w	approved vill recon	, the LAs s	hall be seen to the second to the second to the solution of the solution of the solution of the solution the solution the solution second seco	et in accorda final LAs ba 3(d) list.	ance
	(lbs/y) Final Interin	r) WLAs a n limits	are set for me	at 80% ercury	6 reduct in susp	ion fro	in Susp om HSP sedime	F load nt are	l estima set equa	tes. al to
						n nov	v catego	ry, das	sed on F	1322
	output	t for the								
				Callegu	as Creek		I	Revolon	Slough	
	Flow Ra	nde	Agricu	Ilture	Open S	Space	Agricultu	Agriculture Open Space		
		-	Interim	Final	Interim	Final	Interim	Final	Interim	Final
	0-15,000 MG	Y ¹	3.9	0.5	5.5	0.7	2	0.2	2.9	0.2
	15,000-25,00	0 MGY	12.6	1.9	17.6	2 .7	4.8	0.8	6.7	1.1
	Above 25,00	0 MGY	77.5	11.2	108.4	17.9	12.2	2.2	17.1	2
	¹ MGY: millio	n gallons pe	er year.							
Margin of Safety	A margin of uncertainty achieved if for this TM assumption ensure suf methods e assigned to implement reductions never exce three year	y in the n the wa ADL. T ns made ficient p mployed to the TN tation of for the ceding n	analys ater bo he imp during orotecti d in de ADL at f the T other s umeric	is that dies. I blicit M g deve ion un- velopi nd ass MDL. source c targe	could r Both im AOS ste lopmen der all c ng the T umed to This re s. Calcu t concer	esult i plicit ms fro t of m conditi rMDL o rema esults ulation ntratic	n target: and exp om the u ultiple r ons and <i>L</i> . Back in const in highe n of allo ons rathe	s not b licit an use of c umer conse groun ant the r requ cation er than	being re inclue conserv ic target ervative d loads roughou ired s is base the onc	ded ative ts to are at ed on ce in
	loads and combined (without a actual com	loading discharg ny dilut	capaci ges fro ion pro	ty for m Cal ovided	Mugu I leguas (by tida	Lagoor Creek I flush	n are bas and Rev ing), wh	sed on volon S nich ov	the Slough ver pred	licts

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
	also included for copper and nickel to account for the uncertainty resulting from the calculation of the allowable load based on the median flow rate and translator of each flow category. The 15% explicit MOS is determined sufficient to address the elevated flow category, but still account for the more conservative nature of low and average category.
Future Growth	Ventura County accounts for slightly more than 2% of the state's residents with a population of 753,197 (US Census Bureau, 2000). GIS analysis of the 2000 census data yields a population estimate of 334,000 for the CCW, which equals about 44% of the county population. According to the Southern California Association of Governments (SCAG), growth in Ventura County averaged about 51% per decade from 1900-2000; with growth exceeding 70% in the 1920s, 1950s, and 1960s. Significant population growth is expected to occur within and near present city limits until at least 2020. Future growth may initially increase loadings as construction activities expose bare soil and increase erosion-related discharges to receiving water. However, once development has been completed the presence of impermeable land surface and landscaped areas may reduce the amount of natural soils that are eroded and carried to the stream. For copper, future growth could increase loadings from urban areas and POTWs due to increased traffic (i.e., brake pad residues), architectural copper use and corrosion of copper pipes. Selenium loading may increase if increase irrigation raises the groundwater table and increases high selenium groundwater seepage to surface waters. However, if increased growth results in increased water demand and high selenium groundwater is pumped and treated to supply this demand, the selenium could decrease.
Seasonal Variations and Critical Conditions	Seasonal variations are addressed for copper, nickel, and selenium by developing separate allocation for wet and dry weather. Critical conditions for copper, nickel, and selenium are developed using model result to calculate the maximum observed 4-day average dry weather concentration and the associated flow condition. Wet weather as a whole is defined as a critical condition. For mercury, there is no indication that mercury contamination in Mugu Lagoon is consistently exacerbated at any particular time of the year. Since the potential effects of mercury are related to bioaccumulation in the food chain over long period time, any other short term variations in concentration which might occur are not likely to cause significant impacts upon beneficial uses. Therefore, seasonal variations do not affect critical conditions for Calleguas Creek watershed mercury TMDL.

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
Special Studies	Special Studies
and Monitoring Plan	Several special studies are planned to improve understanding of key aspects related to achievement of WLAs and LAs for the Metals and Selenium TMDL
	1. Special Study #1 – Evaluation and Initiation of Natural Sources Exclusion
	The TMDL technical report has identified ambient sources as the primary significant selenium and mercury loadings in the watershed and as potentially significant sources of copper and nickel. The portion of all ambient sources associated with open space runoff and natural groundwater seepage is accounted for in this TMDL as "background load." This special Study will evaluate whether or not background loads for each constituent qualify for natural source exclusion. Specifically, this study will consider whether or not any portion of the ambient source contribution for agricultural or urban runoff loads qualify for natural source exclusions and/or site specific objectives. The presence of natural sources makes achievement of selenium and mercury targets during all conditions unlikely. For copper, achievement of the CTR targets or the WER based targets (if approved) in Revolon Slough may not be feasible due to the magnitude of background loads. Completion of site specific objectives and/or a use attainability analysis shall be required to review any potential change to water quality objectives for these constituents. This special study will be used to develop the necessary information to revise the water quality objectives for selenium and mercury and possibly for copper and nickel.
	2. Special Study #2 – Identification of selenium contaminated Groundwater Sources
	The purpose of this special study will be to identify groundwater with high concentrations of selenium that is either being discharged directly to the stream or used as irrigation water. The investigation will focus on areas where groundwater has a high probability of reaching the stream and identify practical actions to reduce the discharge of the groundwater to the stream. The analysis will include an assessment of the availability of alternative water supplies for irrigation water, the costs of the alternative water supplies and the costs of reducing groundwater discharges.

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL	
	3. Special Study #3 – Investigation of Soil Concentrations and Identification of "Hot Spots"	
	The purpose of this special study will be to identify terrestrial areas with high concentrations of metals and/or selenium, either due to anthropogenic sources or resulting from high natural concentrations in soils. Use of detailed soil maps for the watershed in combination with field survey and soil sampling may lead to identification of areas important for reducing overall loads reaching the stream. Identification of any areas with elevated soil concentrations of metals and/or selenium would create an opportunity for efficient and targeted implementation actions, such as remediation or erosion control.	T E
	4. Special Study #4 (Optional) – Determination of Water Effect Ratio for Copper in Revolon Slough	N
	The purpose of this optional special study would be to calculate a WER for copper that is specific to Revolon Slough. A WER was not previously developed for Revolon Slough because it was not listed for copper. Subsequent monitoring demonstrated that the saltwater copper	Τ
	CTR criterion was exceeded in the Revolon Slough. This Study would parallel the developed WER for Mugu Lagoon and Calleguas Creek. This is an optional special study to be conducted if desired by the stakeholders or determined necessary by the Executive Officer.	A
	5. Special Study #5 (Optional) – Determination of Site-Specific Objectives for Mercury and Selenium	
	Special Study #1 will evaluate whether a natural source exclusion is appropriate for background loads of mercury and selenium or any portion of the ambient source contributions to non-background loads in the Calleguas Creek watershed. This special study will develop any	I V
	SSOs deemed necessary to account for the background conditions and/or site-specific impacts of mercury and selenium (and possibly for copper and nickel) on wildlife and humans in the watershed. This is an optional special study to be conducted if desired by the stakeholders or determined necessary for establishing a natural source exclusion.	E
	Monitoring Plan	
	The Calleguas Creek Watershed TMDL Monitoring Plan (CCWTMP) is designed to monitor and evaluate the implementation of this TMDL and refine the understanding of current metal and selenium loads. CCWTMP is intended to parallel efforts of the Calleguas Creek Watershed Nutrients TMDL, Toxicity TMDL, and OC Pesticide,	

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL	
	PCBs, and Sediment TMDL; as well as the coordinated monitoring program which is currently being developed by Calleguas Creek Watershed stakeholders to minimize duplicative sampling efforts between required monitoring programs in the watershed including NPDES, Conditional Waiver for Discharges from Irrigated Lands (Conditional Waiver) Program and TMDL monitoring.	
	The goals of the CCWTMP include: (1) to determine compliance with copper, mercury, nickel, and selenium numeric targets at receiving water monitoring stations and at POTWs discharges; (2) to determine compliance with waste load and load allocations for copper, mercury, nickel, and selenium at receiving water monitoring stations and at POTWs discharges; (3) to monitor the effect of implementation action by urban, POTW, and agricultural dischargers on in-stream water quality; and (4) to implement the CCWTMP in a manner consistent with other TMDL implementation plans and regulatory actions within the Cellagues Creek waterhed	I
	the Calleguas Creek watershed. Monitoring conducted through the Conditional Waiver Program may meet part of the needs of the CCWTMP. To the extent monitoring required by the Metals and Selenium TMDL Implementation Plan parallels monitoring required by the Conditional Waiver Program, it shall be coordinated with the Conditional Waiver Program monitoring conducted by individuals and groups subject to the term and conditions of the Conditional Waiver.	
	Monitoring will begin within one year of the effective date of the TMDL. In-stream water column samples will be collected quarterly for analysis of general water quality constituents (GWQC), copper, mercury, nickel, selenium, and zinc. In-stream water column samples will be generally be collected at the base of Revolon Slough and Calleguas Creek, and in Mugu Lagoon (collection of flow-based samples will occur above the tidal prism). Additionally, sediment samples will be collected semi-annually in Mugu Lagoon and analyzed for sediment toxicity resulting from copper, mercury, nickel, selenium, and zinc. At such a time as numeric targets are consistently met at these points, an additional site or sites will be considered for monitoring to ensure numeric targets are met throughout the lower watershed.	
	Additional samples will be collected concurrently at representative agricultural and urban runoff discharge sites as well as at POTWs in each of the subwatersheds and analyzed for GWQCs, copper, mercury, nickel, selenium, and zinc. The location of the land use stations will be determined before initiation of the CCWTMP. Environmentally	

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL			
	relevant detection limits will be used for metals and selenium (i.e.			
	detection limits lower than applicable target), if available at a			
	commercial laboratory.			
	Compliance sampling station locations:			
	Subwatershed Station ID Station Location Contituent			
				Water Column: Cu, Ni, Hg, Se, Zn
	Mugu Lagoon	01-11-BR	11th Street Bridge	Bird Egg: Hg, Se
				Fish Tisue: Hg, Se Sediment: Cu, Ni, Hg, Se, Zn
			Revolon Slough East	Water Column: Cu, Ni, Hg, Se, Zh
	Revolon Slough	04-WOOD	Side of Wood Road	Fish Tisue: Hg, Se
		03-CAMAR	Calleguas Creek at University Drive	Water Column: Cu, Ni, Hg, Se, Zn
	Calleguas Creek	03D-CAMR	Camrosa Water Reclamation Plant	Water Column: Cu, Ni, Hg, Se, Zn
		9AD-CAMA	Camarillo Water Reclamation Plant	Water Column: Cu, Ni, Hg, Se, Zn
	Conejo Creek	10D-HILL	Hill Canyon Wastewater Treatment Plant	Water Column: Cu, Ni, Hg, Se, Zn
Implementation	The final WLA	As will be i	ncluded for permit	tted stormwater discharges,
Plan			ES discharges in ac	
	compliance sc	hedules pro	ovided in Table 7-1	19.2. The Regional Board
	may revise the	se WLAs t	based on additional	l information developed
	through specia	l studies ar	nd/or monitoring c	onducted as part of this
				hedule was developed with
				nickel will be adopted
				or nickel will proceed
	-			approvals of the WER and
				n actions could be required.
				on of implementation
	actions to addr	-		r
	WLAs establis	shed for the	e three major POTV	Ws in this TMDL will be
	implemented t	hrough NP	DES permit limits	. Compliance will be
				uent discharge as defined in
				amarillo WRPs are working
	1		~	e
	towards discontinuing the discharge of effluent to Conejo Creek. If this plan is implemented, the POTW allocations for the watershed will			
	be achieved by reduction of effluent discharges to the stream. The			
	implementation plan includes sufficient time for this plan to be			
	implementation plan includes sufficient time for this plan to be implemented. However, if this plan is altered, the POTWs will need to			
	meet allocations through other method such as source control			
	-			
	activities. The Regional Board will need to ensure that permit			
	conditions are consistent with the assumptions of the WLAs. Should			
	federal, state, or regional guidance or practice for implementing WLAs			

Ν Т A T Ι V E

E

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL	
	into permits be revised, the Regional Board may reevaluated the TMDL to incorporate such guidance.	
	In accordance with current practice, a group concentration-based WLA has been developed for all permitted stormwater discharges, including municipal separate storm sewer systems (MS4s), Caltrans, general industrial and construction stormwater permits, and Naval Air Weapons Station Point Mugu. MS4 WLAs will be incorporated into the NPDES permit as receiving water limits measured in-stream at the	Т
	base of Revolon Slough and Calleguas Creek, and in Mugu Lagoon and will be achieved through the implementation of BMPs as outlined in the implementation plan. The Regional Board will need to ensure that permit conditions are consistent with the assumptions of the	E
	WLAs. If BMPs are to be used, the Regional Board will need to detail its findings and conclusions supporting the use of BMPs in the NPDES permit fact sheets. Should federal, state, or regional guidance or	N
	practice for implementing WLAs into permits be revised, the Regional Board may reevaluated the TMDL to incorporate such guidance. The Regional Board may revise these WLAs based on the collection of additional information developed through special studies and/or	Т
	monitoring conducted as part of this TMDL.	A
	LAs will be implemented through the State's Nonpoint Source Pollution Control Program (NPSPCP) and Conditional Waiver for Discharges from Irrigated Lands adopted by the Los Angeles Regional Water Quality Control Board on November 3, 2005. Compliance with LAs will be measured in-stream at the base of Revolon Slough and	Т
	Calleguas Creek and in Mugu Lagoon and will be achieved through the implementation of BMPs consistent with the NPSPCP and the Conditional Waiver Program.	Ι
	The Conditional Waiver Program requires the development of an agricultural water quality management plan (AWQMP) to address pollutants that are exceeding receiving water quality objectives as a	V
	result of agricultural discharges. Therefore, implementation of the load allocations will be through the development of an agricultural management plan for metals and selenium. Implementation of the load allocations will also include the coordination of BMPs being	E
	implemented under other required programs to ensure metal discharges are considered in the implementation. Additionally, agricultural dischargers will participate in educational seminars on the implementation of BMPs as required under the Conditional Program.	
	Studies are currently being conducted to assess the extent of BMP implementation and provide information on the effectiveness of BMPs for agriculture. This information will be integrated into the AWQMP	

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
	that will guide the implementation of agricultural BMPs in the Calleguas Creek watershed. After implementation of these action, compliance with the allocations and TMDL will be evaluated and the allocations reconsidered if necessary based on the special studies and monitoring plan section of the implementation plan
	As shown in Table 7-19.2, implementation of LAs will be conducted over a period of time to allow for implementation of the BMPs, as well as coordination with special studies and implementation actions resulting from other TMDL Implementation Plans (Nutrient, Historic Pesticides and PCBs, Sediment, Metals, Bacteria, etc.). The Regional Board may revise the LAs based on the collection of additional information developed through special studies and/or monitoring conducted as part of this TMDL.

Τ

E

T

Ι

E

Item	Implementation Action ¹	Responsible Party	Completion Date
1	Effective date of interim Metals and Selenium TMDL waste load allocation (WLAs)	POTWs, Permitted Stormwater Dischargers ² (PSD)	Effective date of the amendment
2	Effective date of interim Metals and Selenium TMDL load allocation (LAs)	Agricultural Dischargers	Effective date of the amendment
3a	Submit Calleguas Creek Watershed Metals and Selenium Monitoring Program	POTWs, PSD, Agricultural Dischargers	Within 6 months after the effective date of the amendment
3b	Implement Calleguas Creek Watershed Metals and Selenium Monitoring Program	POTWs, PSD, Agricultural Dischargers	Within 6 months of Executive Officer approval of the monitoring program
4a	Conduct a source control study, develop and submit an Urban Water Quality Management Program (UWQMP) for copper, mercury, nickel, and selenium	MS4s	Within 2 years after the effective date of the amendment
4b	Conduct a source control study, develop and submit an UWQMP for copper, mercury, nickel, and selenium	Caltrans	Within 2 years after the effective date of the amendment
4c	Conduct a source control study, develop and submit an UWQMP for copper, mercury, nickel, and selenium	NAWS point Mugu (US Navy)	Within 2 years after the effective date of the amendment
5	Implement UWQMP	PSD	Within 1 year of approval of UWQMP by the Executive Officer
6	Develop and submit an Agricultural Water Quality Management Program (AWQMP) as described in the Conditional Waiver Program	Agricultural Dischargers	Within 2 years after the effective date of the amendment
7	Implement AWQMP	Agricultural Dischargers	Within 1 year of approval of AWQMP by the Executive Officer
8	Seek delisting of zinc from the 303(d) list for Reach 1, Mugu Lagoon (available data suggest zinc is not causing impairment in the CCW)	POTWs, PSD, Agricultural Dischargers	During comment period for next 303(d) Listing cycle
9	Submit progress report on salinity management plan, including status of reducing WRP effluent discharges to Conejo and Calleguas Creek reaches of the watershed	POTWs	Within 3 years after the effective date of the amendment
10	If progress report identifies the effluent discharges reduction is not progressing, develop and implement source control activities for copper, mercury, nickel, and selenium	POTWs	Within 4 years after the effective date of the amendment
11	Re-evaluation of POTW interim waste load allocations for copper, mercury, and nickel	POTWs	Within 5 years after the effective date of the amendment

Table 7-19.2 Calleguas Creek Watershed Metals and Selenium TMDL: Implementation Schedule

¹ The Regional Board regulatory programs addressing all discharges in effect at the time this implementation task is due may contain requirements substantially similar to the requirements of these implementation tasks. If such requirements are in place in another regulatory program including other TMDLs, the Executive Officer may revise or eliminate this implementation task to coordinate this TMDL implementation plan with other regulatory programs.

² Permitted Stormwater Dischargers (PSD) include MS4s, Caltrans, the Naval Air Weapons Station at Point Mugu, and general industrial and construction permittees.

Attachment A to Resolution No. R4-2006-XXX

Item	Implementation Action ¹	Responsible Party	Completion Date
12a	Evaluate the results of the OCs TMDL, Special Study – Calculation of sediment transport rates in the Calleguas Creek watershed for applicability to the metals and selenium TMDL	Agricultural Dischargers, PSD	Within 6 months of completion of the study
12b	Include monitoring for copper, mercury, nickel, and selenium in the OC pesticides TMDL, special Study – Monitoring of sediment by source and land use type	Agricultural Dischargers, PSD	Within 2 years after the effective date of the amendment
12c	Expand scope of the OC Pesticide TMDL, Special Study – Examination of food webs and accumulation in the Calleguas Creek watershed to ensure protection of wildlife to include mercury	Interested parties	If necessary, prior to end of the implementation period
12d	Evaluate the results of the OC Pesticides TMDL, Special Study – Effects of BMPs on Sediment and Siltation to determine the impacts on metals and selenium	Agricultural Dischargers, PSD	Within 6 months of completion of the study
13a	Submit work plan for Special Study #1– Identification of Natural Sources Exclusion	Agricultural Dischargers, PSD	Within 1 year after the effective date of the amendment
13b	Submit results of Special Study #1 – Identification of Natural Sources Exclusion	Agricultural Dischargers, PSD	Within 4 years after the effective date of the amendment
14a	Submit work plan for Special Study #2 – Identification of selenium Contaminated Groundwater Sources	POTWs, PSD, and Agricultural Dischargers	Within 1 year after the effective date of the amendment
14b	Submit results of Special Study #2 – Identification of selenium Contaminated Groundwater Sources	POTWs, PSD, and Agricultural Dischargers	Within 2 years after the effective date of the amendment
15a	Submit work plan for Special Study #3 – Investigation of Metals' "Hot Spot" and Natural Soil	PSD and Agricultural Discharger	Within 1 year after the effective date of the amendment
15b	Submit results of Special Study #3 – Investigation of metals' "Hot Spot" and Natural Soil	PSD and Agricultural Discharger	Within 3years after the effective date of the amendment
16	Special Study #4 (Optional) – Determination of WER for copper in Revolon Slough	PSD and Agricultural Dischargers	If necessary, prior to end of the implementation period
17	Special Study #5 (Optional) – Determination of Site Specific Objective for Selenium	PSD and Agricultural Dischargers	If necessary, prior to end of the implementation period
18	Evaluate effectiveness of BMPs implemented under the AWQMP and UWQMP in controlling metals and selenium discharges	PSD and Agricultural Dischargers	6 years after the effective date of the amendment
19	Evaluate the results of implementation actions 14 and 15 and implement actions identified by the studies	POTWs, PSD, and Agricultural Dischargers	Within 1 year after the completion of the studies
20	If needed, implement additional BMPs or revise existing BMPs to address any issues not covered by implementation efforts of related Calleguas Creek watershed TMDLs (Nutrients, Toxicity, OC Pesticides, PCBs, and Siltation) and the Conditional Waiver Program	Agricultural Dischargers	7 years after the effective date of the amendment

Ν T A

Т

E

V E

Ι

T

Item	Implementation Action ¹	Responsible Party	Completion Date
21	Consider nickel SSO proposed by stakeholders	Regional Board	2 years after the effective date of the amendment.
22	Based on the result from items 1-21, Regional Board will consider re-evaluation of the TMDLs, WLAs, and LAs if necessary	Regional Board	2 years form submittal of information necessary for re-evaluation
23	Re-evaluation of Agricultural and Urban load and waste load allocations for copper, mercury, nickel, and selenium based on the evaluation of BMP effectiveness. Develop milestones for reductions resulting from BMP implementation	Agricultural and Urban Dischargers	5, 10, and 15 years after the effective date of the amendment
24	Stakeholders and Regional Board staff will provide information items to the Regional Board, including: progress toward meeting TMDL load reductions, water quality data, and a summary of implementation activities completed to date	Regional Board	2 years after the effective date, and every 2 years following
25	Achievement of Final WLAs for copper, mercury, nickel, and selenium	POTWs	Within 10 years after the effective date of the amendment ³
26	Achievement of Final WLAs and LAs for copper, nickel, mercury and selenium	Agricultural Dischargers, PSD	Within 15 years after the effective date of the amendment ³

Τ

E

N

Τ

A

Τ

Ι

V E

³ Date of achievement of WLAs and LAs based on the estimated timeframe for educational programs, special studies, and implementation of appropriate BMPs and associated monitoring. The Conditional Waiver Program will set timeframes for the BMP management plans.